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Abstract

Dispersion is a phenomenon in which a wave’s phase velocity varies with its frequency. It can
be relevant to all kinds of wave movements, including sound, seismic waves, and gravitational
waves. The double dispersion equation is important due to its numerous physical applications,
such as examining the nonlinear wave distribution in waveguides, investigating the interaction
of waveguides with the surrounding medium, and assessing the probability of energy transfer
through lateral waveguide coverings. In view of this, this article explores analytical examina-
tions of a (1+1)-dimensional generalized double dispersion equation in inhomogeneous and
uniform Murnaghan’s rod. This is applicable in modeling wave propagation in an elastic solid
material, which has significance in solid-state mechanics. Therefore, it is entrenched in solid-
state physics. Lie group theory is invoked to identify point symmetries associated with the
model, enabling the derivation of nonlinear ordinary differential equations through symme-
try reduction. Furthermore, direct integration of the nonlinear ordinary differential equation is
performed to obtain closed-form solutions to the underlying model. Consequently, an elliptic
cosine function solution is attained. Additionally, using a specific transformation, the technique
further ensures the attainment of aWeierstrass function solution. To securemore solutions to the
studied equation, the well-known Kudryashov’s method is utilized, affording us the opportu-
nity to obtain an exponential function solution. Subsequently, we applied the (G′/G)-expansion
technique, which consequently produces hyperbolic, rational, and trigonometric function solu-
tions. Moreover, to view the wave dynamics of the achieved solutions, which provides us with
the opportunity to capture the physical meanings of these solutions, various wave depictions
are demonstrated in three-dimensional, two-dimensional, contour, and density plots. In conclu-
sion, the study produces notable conserved quantities such as energy, mass, and momentum,
which are secured using Ibragimov’s theorem, as well as the multiplier approach.
Keywords: generalized double dispersion equation; Lie symmetry method; closed form solu-

tions; Kudryashov’s and (G′/G)-expansion techniques; conservation laws.
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1 Introduction

In the world around us, we encounter amultitude of complex physical phenomena that exhibit
nonlinearity. These phenomena are accurately described by Nonlinear Partial Differential Equa-
tions (NPDEs), with examples ranging from population ecology and epidemiology to biology,
plasma physics, fluid mechanics, and nonlinear circuits. Nonlinear partial differential equations
are significant as they represent numerous real-world issues across various disciplines, such as
in Physics, NPDEs are used to represent physical problems like fluid dynamics, solid mechan-
ics, acoustics, plasma physics, and quantum field theory. In life sciences, NPDEs are utilized in
chemical and biological systems, as well as for modeling population biology, predator-prey in-
teractions, and other scenarios. Additionally, in engineering, NPDEs are employed to address
practical issues. In mathematics, NPDEs have been used to tackle mathematical problems like
the Poincaré conjecture and the Calabi conjecture. NPDEs pose challenges for study as there are
limited universal methods applicable to all equations. Typically, each equation must be examined
separately [1-20].

To gain a deep understanding of these phenomena, it is essential to investigate the solutions
to the differential equations (DEQNs) that govern them. Thus, this necessitates investigation of
solitary wave solutions of these NPDEs in their exact structure. Extensive research continues to
be conducted on these equations, as they play a pivotal role in modeling relationships between
various physical quantities found in the natural world. Recent advancements in computer tech-
nology have greatly improved our ability to develop algorithms for solving NPDEs. Despite this
progress, it is important to acknowledge the brilliant minds that have laid the theoretical ground-
work for these technologies to flourish. In recent times, numerous researchers with a strong inter-
est in nonlinear physical phenomena have explored closed-form solutions of NPDEs due to their
significance in analyzing model outcomes. It is vital that research on closed-form solutions to
NPDEs plays a crucial role in understanding specific physical scenarios. The range of solutions to
NPDEs holds a significant position in various scientific fields. These include electromagnetic the-
ory, chemical physics, optical fibers, hydrodynamics, meteorology, plasma physics, biology, heat
flow, chemical kinetics, and geochemistry.

Recognizing thatmany prominent scientists viewnonlinear science as a key frontier for gaining
a deeper understanding of nature, we present a few relevant models, including a 3D generalized
nonlinear potential model, the YTSF equation in Engineering and Physics, recently examined in
[2]. Furthermore, an examination in another source focused on themodified and generalized ZKe
model, highlighting ion-acoustic solitary waves found in a magnetoplasma environment contain-
ing electron-positron-ion particles present in a native universe [11]. The authors in the reference
delve into applications of the model in studying waves in dust-ion acoustics, dust-magneto, and
ions within laboratory dusty plasmas.

Moreover, studies in [40] explored bright solitons (vectors) and their interactions within a
coupled Fokas-Lenells model. The investigation also extended to optical pulses’ femtosecond em-
bedded in double-refractive fibers in optics, modeled using NPDEs. Additionally, attention was
given to a type of Boussinesq-Burgers model system recounting waves embedded in shallow wa-
ter near ocean shores and lakes, as discussed in [13]. The text also references other related studies
for further exploration. The listed publication in [3] can be visited also in which a type of three
dimensional generalized Zakharov-Kuznetsov equation was investigated. Additionally, the appli-
cation of topological and non-topological solitons in the fields of physical and nonlinear sciences
were highlighted.

It is well known that there is no universal approach for achieving exact solutions to NPDEs.
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However, to address this persistent issue, researchers have developed several effective techniques.
For instance, Sophus Lie (1842–1899) made significant contributions to the field with his investi-
gations on Lie algebras [29, 30], providing a unified technique for solving a vast range of DEQNs.
Other notable study using Lie symmetry approach can be found inKumar andDhiman [24]where
they invoked Lie symmetry approach and the unified technique to solve a coupled breaking soli-
ton model. This offers a universal and robust method by which exact solutions to differential
equations can be obtained systematically. However, the limitation of the approach lies in the fact
that it can only be applied to differential equations that have symmetries.

Recent advancements in solving DEQNs include Kudryashov’s approach [21], the simplest
equation technique [34], the sine-Gordon equation expansion technique [6], Hirota’s bilinear ap-
proach [26], the (G′/G)-expansion technique [35], the power series solution technique [12], the
Darboux transformation approach [42]. Additional techniques such as the Painlevé expansion
technique [8], the bifurcation approach [41], homotopy perturbation [7], extended homoclinic
test technique [9], tanh-coth technique [38], Adomian decomposition technique [37], symme-
try group analysis [29, 30], F-expansion approach [43], Bäcklund transformation method [15],
extended simplest equation technique [21], Cole-Hopf transformation approach [31], rational ex-
pansion approach [39], and many more have been developed.

Since the establishment of Petviashvili and Kadomtsev’s hierarchy equation models over 50
ago, numerous research papers have been published, each exploring different aspects of this com-
plex field of equations. For instance, in the publication given in [25], Kuo and Ma proposed an
effective algorithm for constructing nonlinear evolution equations. In the same vein, Madhavan et
al. [27] examined a pursuit differential game involving one pursuer and one evader for a higher-
level infinite system comprised of first-order ternary differential equations, and demonstrated the
successful completion of the pursuit within the game. Besides, the authors in [33] investigated the
issue that the Korteweg-de Vries equation fails to completely represent the intricacy of nonlinear
waves. To tackle this challenge, they resolved the extended Korteweg-de Vries equation, incorpo-
rating higher-order nonlinear and dispersion components. The primary aim was to explore the
influence of cubic nonlinearity and fifth-order dispersion on solitary wave propagation.

One of the interesting and highly applicable fourth-order NPDEs is a double dispersion equa-
tion (DoDEqn) in an inhomogeneous and uniform Murnaghan rod, explicated as [32],

∂2w(x, t)

∂t2
−
(
E

ρ

)
∂2w(x, t)

∂x2
− β

ρ

{
w(x, t)

∂2w(x, t)

∂x2
+

(
∂w(x, t)

∂x

)2
}

−
(
ν2R2

0

2

)
∂4w(x, t)

∂t2∂x2
+

(
ν2R2

0σ

2ρ

)
∂4w(x, t)

∂x4
= 0, (1)

where E represents Young’s modulus, β stands for the nonlinear coefficient, σ connotes the Lamé
coefficient, ν represents the Poisson ratio while n1, l, ρ, n2, R0, and ρ are constants. Dispersion is
a phenomenon in which a wave’s phase velocity varies with its frequency. It can be relevant to all
kinds ofwavemovements, including sound, seismicwaves, and gravitationalwaves. In optics, dis-
persion refers to a characteristic of light and other electromagnetic waves. The DoDEqn model is
important due to its numerous physical applications, such as examining the nonlinear wave distri-
bution in waveguides, investigating the interaction of waveguides with the surrounding medium,
and assessing the probability of energy transfer through lateral waveguide coverings. This equa-
tion is applicable in modeling wave propagation in elastic solid materials, which has significance
in solid-state mechanics.

In his work, Samsonov [32] developed a range of double dispersive equations for solid mate-
rials containing elastic waveguides and rods with complex properties. The Euler equation is used
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to derive the four forms of the double dispersive equations and they are:

(a) Movement within the heterogeneous and non-uniform rod.
(b) Displacement within the heterogeneous and uniform rod.
(c) Movement within the homogeneous and non-uniform rod.
(d) Movement within the homogeneous and uniform rod.

Additionally, elliptic functions, solitarywaves, aswell as numerical solutionswere also entrenched
by the author.

The DoDEqn (1), also referred to as Euler’s displacement model in heterogeneous and uni-
form Murnaghan’s rod [32], has been investigated by a few other researchers. Nisar and Silam-
barasan [28] utilized the F-expansion technique on the double dispersion model in Murnaghan’s
rod to attain a Jacobi elliptic function solution and categorized it into six distinct solution families.
Each solution is accompanied by the necessary condition, and the degeneration of the Jacobi solu-
tions is based on the modulus of the elliptic function. The solutions derived from algebraic equa-
tions determine the formation of the six classifications. Additionally, Cattani et al. [5] were able
to solve the double dispersive model in the non-uniform circular cylindrical rod for both bright
and dark solitons by invoking themodified exp [−φ (ζ)] function alongside extended sinh-Gordon
techniques.

Having explored the various work done onmodel (1), there is a gap that still needs to be filled,
which has led us to consider the study of a generalized version of the equation (significant in solid
- state physics) from a Lie group analysis perspective. Therefore, the (1+1)-dimensional Gener-
alized Double Dispersion Equation ((1+1)D-GnDDE) to be investigated in this work is presented
as,

∆ ≡ wtt + awxx + b(wwxx + w2
x) + cwttxx + dwxxxx = 0, (2)

in which constant coefficients a to d are all nonzero real valued. We declare here that, to the best of
our knowledge, the generalized model (2) has not been investigated previously. To carry out this
study, the article is structured as follows: The introduction and literature review of the work done
on the model under investigation are presented in Section 1. Section 2 contains the procedural
pattern through which Lie point symmetries of (1+1)D-gnDDE (2) are obtained. Additionally,
various approaches are explored to secure analytic solutions of interest to (2). Moreover, in Sec-
tion 3, conservation laws associated with the model under study are calculated using Ibragimov’s
theorem alongwith themultiplier approach. Thereafter, the concluding remarks follow in Section
4.

2 Symmery Analysis and Solutions of (2)

We begin by deriving the Lie point symmetries of (1+1)D-gDDE (2), after which we use them
to obtain its exact solutions.
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2.1 Lie point symmetries of (2)

The symmetry group of (1+1)D-gnDDE (2) will be formed by the vector field,

Q = ξ1(x, t, w)
∂

∂t
+ ξ2(x, t, w)

∂

∂x
+ φ(x, t, w)

∂

∂w
,

with coefficients ξi, i = 1, 2 and φ being functions of (x, t, w), is a Lie point symmetry of (1+1)D-
gnDDE (2) if,

Q[4]
[
wtt + awxx + b(wwxx + w2

x) + cwttxx + dwxxxx

] ∣∣∣
∆=0

= 0, (3)

where Q[4] represents the fourth extension of vector field Q, which is defined as,

Q[4] = Q+ ζt
∂

∂wt
+ ζx

∂

∂wx
+ ζtt

∂

∂wtt
+ ζxx

∂

∂wxx
+ ζttxx

∂

∂wttxx
+ ζxxxx

∂

∂wxxxx
, (4)

with the ζ ′s given as:
ζt = Dt(η)− wtDt(ξ

1)− wxDt(ξ
2),

ζx = Dx(η)− wtDx(ξ
1)− wxDx(ξ

2),

ζtt = Dt(ζ
t)− wttDt(ξ

1)− wtxDt(ξ
2),

ζxx = Dx(ζ
x)− wtxDx(ξ

1)− wxxDx(ξ
2),

ζttxx = Dx(ζ
ttx)− wtttxDx(ξ

1)− wttxxDx(ξ
2),

ζxxxx = Dx(ζ
xxx)− wtxxxDx(ξ

1)− wxxxxDx(ξ
2),

and the total derivatives are given as:

Dt =
∂

∂t
+ wt

∂

∂w
+ wtt

∂

∂wt
+ wtx

∂

∂wx
+ wtxx

∂

∂wxx
+ wtttxx

∂

∂wttxx
+ . . . ,

Dx =
∂

∂x
+ wx

∂

∂w
+ wxx

∂

∂wx
+ wtx

∂

∂wt
+ wttxxx

∂

∂wttxx
+ wxxxxx

∂

∂wxxxx
+ . . . .

(5)

By expanding (3) and separating it based on the derivatives of the function w, we can derive the
following system of overdetermined linear partial differential equations (LPDEQs):

ξ1t = 0, ξ1w = 0, ξ1x = 0, ξ2t = 0, ξ2w = 0, ξ2x = 0, φ = 0,

which can easily be solved and so, the solution to the system yields,
ξ1(x, t, w) = B1 and ξ2(x, t, w) = B2,

in which B1, together with B2 are arbitrary constants. Thus, the Lie point symmetries of (1+1)D-
gnDDE (2) are translational, given as,

Q1 =
∂

∂t
and Q2 =

∂

∂x
. (6)

2.2 Travelling wave solutions of (1+1)D-gnDDE (2)

On considering a combination of the obtained translational symmetriesQ1 andQ2 for (1+1)D-
gnDDE (2) as Q = Q1 + ωQ2. The symmetry produces the two invariants,

ζ = x− ωt, U = w,
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that yield U = U(ζ) (wherein ζ is the new independent variable) as the group-invariant. One
makes use of the above and successfully transforms model (2) to the nonlinear ordinary differen-
tial equation (NLNODE) of fourth-order, viz.,

aU ′′(ζ) + b
{
U(ζ)U ′′(ζ) + U ′2(ζ)

}
+ cω2U ′′′′(ζ) + dU ′′′′(ζ) + ω2U ′′(ζ) = 0. (7)

2.2.1 Exact solutions of (2) through direct integration

The direct integration technique to be invoked here will furnish three categories of solutions
to (1+1)D-gnDDE (2). These will take the structure of Jacobi elliptic, Weierstrass as well as hy-
perbolic secant functions.

• Jacobi elliptic cosine function solution
One commences by integrating (7) twice with regard to independent variable ζ and the
result purveys,

aU(ζ) +
1

2
bU(ζ)2 + cω2U ′′(ζ) + dU ′′(ζ) + ω2U(ζ) +A0ζ +A1 = 0, (8)

wherein integration constantsAm,m = 0, 1, are arbitrary. One takesA0 as zero and integrate
the rest of the equation after multiplying it by U ′(ζ). The outcome yields,(

a

cω2
+

1

c

)
U(ζ)2 +

2A1

cω2
U(ζ) +

b

3cω2
U(ζ)3 +

(
d

cω2
+ 1

)
U ′2(ζ) +

2A2

cω2
= 0. (9)

In consequence, we achieve,

U ′2(ζ) = −
{
PU(ζ)3 +QU(ζ)2 +RU(ζ) + S

}
, (10)

where

P =
b

3 (cω2 + d)
, Q =

(
ω2

cω2 + d
+

a

cω2 + d

)
, R =

2A1

cω2 + d
and S =

2A2

cω2 + d
. (11)

Suppose one contemplates the cubic function,

U(ζ)3 +
Q

P
U(ζ)2 +

R

P
U(ζ) +

S

P
= 0, (12)

whose roots are α0, α1 and α2 in such a way that α0 > α1 > α2. Therefore, NLNODE (10)
explicates as,

U ′2(ζ) = −P {(U − α0) (U − α1) (U − α2)} . (13)

Hence, (13) has the solution [20, 1],

U(ζ) = α1 + (α0 − α1) cn2

{√
P (α0 − α2)

4
(ζ − ζ0)

∣∣∣∣M2

}
, M2 =

α0 − α1

α0 − α2
, (14)

where Jacobi cosine function cn as well as constant ζ0 exist. Returning to the original vari-
ables gives the periodic solution of (1+1)D-gnDDE (2) as,

w(x, t) = α1 + (α0 − α1) cn2

{√
b(α0 − α2)

12 (cω2 + d)
(x− ωt− ζ0)

∣∣∣∣M2

}
. (15)
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The wave dynamics of periodic solution (15) is exhibited in the plots explicated in Figure 1.

(a) (b) (c)

Figure 1: The smooth periodic wave structure is demonstrated through the plots in 3D, 2D, and contour formats depicting the elliptic
solution (15) and is displayed using the parameter assignments: b = 0.2, c = 0.1, α = 2, β = −1.2, d = 0.4, ω = 20, α0 = 100,
α1 = 50.05, and α2 = −60 in the interval−13 ≤ t, x ≤ 13.

• Weierstrass function solution
Here, one retrieves a periodic solution to NLNODE (7) in terms ofWeierstrass function [23]
by setting in (9), a transformation as,

U(ζ) = −1

b

{(
ω2 + a

)
+ 12

(
cω2 + d

)
W (ζ)

}
. (16)

Hence, one reckons (9) as NLNODE with Weierstrass elliptic function [14, 4],

℘′(ζ)2 − 4℘(ζ)3 + g1℘(ζ) + g2 = 0, (17)

with the included Weierstrass elliptic invariants g1 as well as g2 expressed as,

g1 =
1

b

(
24A1 −

12a2

b
− 24aω2

b
− 12ω4

b

)
,

g2 =
1

b

(
24A2 +

8a3

b3
+

24a2ω2

b3
− 24aA1

b2
+

24aω4

b3
− 24A1ω

2

b2
+

8ω6

b3

)
.

Hence, solution to NLNODE (7) entrenches in this regard,

U(ζ) = ℘

{
1

2
ζ

√∣∣∣∣− b

3 (cω2 + d)

∣∣∣∣; 24A1

b
− 12ω4

b2
− 24aω2

b2
− 12a2

b2
,
8ω6

b3
+

24aω4

b3

− 24A1ω
2

b2
+

24a2ω2

b3
− 24aA1

b2
+

24A2

b
+

8a3

b3

}
− a+ ω2

b
. (18)

Bearing in mind (16) alongside (17) and reverting to previous variables, one has,

w(x, t) = ℘

{
1

2
(x− ωt)

√∣∣∣∣− b

3 (cω2 + d)

∣∣∣∣; 24A1

b
− 12ω4

b2
− 24aω2

b2
− 12a2

b2
,
8ω6

b3

+
24aω4

b3
− 24A1ω

2

b2
+

24a2ω2

b3
− 24aA1

b2
+

24A2

b
+

8a3

b3

}
− a+ ω2

b
, (19)

where ℘ represents Weierstrass function [14].
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• Bright soliton solution
Here, one considers another case of NLNODE (9), whereby A1 = A2 = 0. This, leads to,(

a

cω2
+

1

c

)
U(ζ)2 +

b

3cω2
U(ζ)3 +

(
d

cω2
+ 1

)
U ′2(ζ) = 0. (20)

Solving the equation furnishes the soliton solution of model (2) as,

w(x, t) =
1

b

{
3
(
a+ ω2

) sech2

[
−1

2

(
B0

√
3 (a+ ω2) +

√
− (a+ ω2)

cω2 + d
(x− ωt)

)]}
, (21)

where B0 is an integration constant. Dynamics of the secant hyperbolic solution (21) is the
plots explicated in Figure 2.

(a) (b) (c)

Figure 2: The combination of bright and dark soliton waves is exhibited through the bell-anti-bell-shaped wave structure of the hyperbolic
secant function solution (21) using the data values b = 2, c = 0.1, α = 0.12, β = −0.13, d = 0.4, ω = 0.01, a = −1, and B0 = 5 in
the interval−20 ≤ t, x ≤ 20.

Now, in order to secure various more interesting closed - form solutions to (1+1)D-gnDDE
(2), some standard approaches are used.

2.2.2 Exact solutions of (2) using Kudryashov’s approach

In this subsection, we utilize Kudryashov’s technique [22] to identify exact solutions for (2).
Our starting point involves hypothesizing solutions for the fourth-order NLNODE (7) in a specific
format,

U(ζ) =

M∑
i=0

AiH
i(ζ), (22)

in which H(ζ) fulfills Riccati equation,

H ′(ζ) = H2(ζ)−H(ζ), (23)

whose solution is given as,

H(ζ) =
1

1 + eζ
. (24)
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Value of M in (22) can be achieved through the application of the balancing technique as refer-
enced in [36]. The constants Ai for i = 0, 1, . . . ,M will also be established through this process,
thus producingM = 2.

One eventually, explicates (22) as,

U(ζ) = A0 +A1H(ζ) +A2H(ζ)2. (25)

By replacing assumption (25) into (7) and utilizing relation (23), we derive the subsequent ex-
pression in terms of H(ζ),

6 aA2 (H (ζ))
4
+ 2 aA1 (H (ζ))

3 − 10 aA2 (H (ζ))
3
+ aA1H (ζ)− 3 aA1 (H (ζ))

2

+24 dA1 (H (ζ))
5
+ 4 aA2 (H (ζ))

2
+ 120 dA2 (H (ζ))

6 − 60 dA1 (H (ζ))
4

+dA1H (ζ) + 50 dA1 (H (ζ))
3 − 15 dA1 (H (ζ))

2 − 336 dA2H (ζ)
5
+ 330 dA2H (ζ)

4

−130 dA2H (ζ)
3
+ 6ω2A2 (H (ζ))

4
+ 16 dA2 (H (ζ))

2
+ ω2A1H (ζ) + 2ω2A1H (ζ)

3

−3ω2A1 (H (ζ))
2 − 10ω2A2 (H (ζ))

3
+ 4ω2A2 (H (ζ))

2
+ 2 bA2

1 (H (ζ))
2

−5 bA2
1H (ζ)

3
+ 3 bA2

1 (H (ζ))
4
+ 10 bA2

2 (H (ζ))
6 − 18 bA2

2H (ζ)
5
+ 8 bA2

2H (ζ)
4

−60ω2cA1 (H (ζ))
4
+ 4 bA2 (H (ζ))

2
A0 + 24ω2cA1H (ζ)

5
+ 9 bA1 (H (ζ))

3
A2

+6 bA2 (H (ζ))
4
A0 − 10 bA2 (H (ζ))

3
A0 − 3 bA1 (H (ζ))

2
A0 − 21 bA1H (ζ)

4
A2

+bA1H (ζ)A0 − 130ω2cA2 (H (ζ))
3
+ 16ω2cA2 (H (ζ))

2
+ 2 bA1 (H (ζ))

3
A0

+12 bA1 (H (ζ))
5
A2 + 50ω2cA1 (H (ζ))

3 − 15ω2cA1 (H (ζ))
2
+ ω2cA1H (ζ)

+120ω2cA2 (H (ζ))
6 − 336ω2cA2 (H (ζ))

5
+ 330ω2cA2 (H (ζ))

4
= 0. (26)

By comparing the coefficients of similar powers of H(ζ) in (26), one derives the subsequent five
algebraic equations involving A0, A1, and A2 that is:

H6(ζ) : 120ω2cA2 + 10 bA2
2 + 120 dA2 = 0,

H5(ζ) : 24ω2cA1 − 336ω2cA2 + 12 bA1A2 − 18 bA2
2 + 24 dA1 − 336 dA2 = 0,

H4(ζ) : 330ω2cA2 − 60ω2cA1 + 6 bA0A2 + 3 bA2
1 − 21 bA1A2 + 8 bA2

2

+ 6ω2A2 + 6 aA2 − 60 dA1 + 330 dA2 = 0,

H3(ξ) : 50 cω2A1 − 130 cω2A2 + 2 bA0A1 − 10 bA0A2 − 5 bA2
1 + 9 bA1A2

+ 2ω2A1 − 10ω2A2 + 2 aA1 − 10 aA2 + 50 dA1 − 130 dA2 = 0, (27)
H2(ζ) : 16ω2cA2 − 15ω2cA1 − 3 bA0A1 + 4 bA0A2 + 2 bA2

1 − 3ω2A1

+ 4ω2A2 − 3 aA1 + 4 aA2 − 15 dA1 + 16 dA2 = 0,

H(ζ) : ω2cA1 + bA0A1 + ω2A1 + aA1 + dA1 = 0.

The solution to these equations thus produces,

A0 = −1

b

(
cω2 + ω2 + a+ d

)
, A1 =

12

b

(
cω2 + d

)
, A2 = −12

b

(
cω2 + d

)
. (28)

Thus, the solutions of (2) for the secured results respectively reads,

w(x, t) = −1

b

{(
cω2 + ω2 + a+ d

)
−

12
(
cω2 + d

)
1 + e(x−ωt)

+
12
(
cω2 + d

)(
1 + e(x−ωt)

)2
}
. (29)

The wave structure of the exponential solution (29) is plotted in Figure 3.
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(a) (b) (c)

Figure 3: The bright soliton wave is exhibited through the bell-shaped wave structure of the exponential function solution (29) using the
parameter values b = 0.2, c = 0.5, α = −0.16, β = −0.4, d = 0.8, ω = 0.2, and a = −5 in the interval−20 ≤ t, x ≤ 20.

2.2.3 Exact solutions of (2) using (G′/G)-expansion approach

One presents the (G′/G)-expansion technique [35] in this subsection to procure analytic solu-
tions of (1+1)D-gnDDE (2).

We observe a solution established as,

U(ζ) =

M∑
j=0

Aj

(
E′(ζ)

E(ζ)

)j

, (30)

where E(ζ) fulfills,

E′′(ζ) + λE′(ζ) + µE(ζ) = 0, (31)

with µ as well as λ taken as constants. Now, M as well as parameters A0, . . . , AM , are treated the
same way as earlier mentioned.

Engagement of the balancing algorithm to NLNODE (7) gives M = 2, consequently, solution
of (7) is of the form,

U(ζ) = A0 +A1

(
E′(ζ)

E(ζ)

)
+A2

(
E′(ζ)

E(ζ)

)2

. (32)

Invoking (30) into (7) and engaging (31) procures an algebraic equation in diverse powers of
E(ζ). Following the procedure highlighted previously, we have the system of equations:

cµω2A1λ
3 + dµA1λ

3 + 14dµ2A2λ
2 + 14cµ2ω2A2λ

2 + 8dµ2A1λ+ 8cµ2ω2A1λ

+µω2A1λ+ aµA1λ+ bµA0A1λ+ bµ2A2
1 + 16dµ3A2 + 2aµ2A2 + 16cµ3ω2A2

+2µ2ω2A2 + 2bµ2A0A2 = 0,

cω2A1λ
4 + dA1λ

4 + 30cµω2A2λ
3 + 30dµA2λ

3 + 22cµω2A1λ
2 + ω2A1λ

2 + aA1λ
2

+22dµA1λ
2 + bA0A1λ

2 + 3bµA2
1λ+ 120dµ2A2λ+ 120cµ2ω2A2λ+ 6µω2A2λ

+6aµA2λ+ 6bµA0A2λ+ 16dµ2A1 + 16cµ2ω2A1 + 2µω2A1 + 2aµA1 + 2bµA0A1

+6bµ2A1A2 = 0,
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16cω2A2λ
4 + 16dA2λ

4 + 15cω2A1λ
3 + 15dA1λ

3 + 2bA2
1λ

2 + 232cµω2A2λ
2

+4ω2A2λ
2 + 4aA2λ

2 + 232dµA2λ
2 + 4bA0A2λ

2 + 60cµω2A1λ+ 3ω2A1λ

+3aA1λ+ 60dµA1λ+ 3bA0A1λ+ 15bµA1A2λ+ 4bµA2
1 + 6bµ2A2

2 + 136dµ2A2

+136cµ2ω2A2 + 8µω2A2 + 8aµA2 + 8bµA0A2, 130cω
2A2λ

3 + 130dA2λ
3

+50cω2A1λ
2 + 50dA1λ

2 + 9bA1A2λ
2 + 5bA2

1λ+ 14bµA2
2λ+ 440cµω2A2λ

+10ω2A2λ+ 10aA2λ+ 440dµA2λ+ 10bA0A2λ+ 40cµω2A1 + 2ω2A1

+2aA1 + 40dµA1 + 2bA0A1 + 18bµA1A2 = 0,

8bA2
2λ

2 + 330cω2A2λ
2 + 330dA2λ

2 + 60cω2A1λ+ 60dA1λ+ 21bA1A2λ

+3bA2
1 + 16bµA2

2 + 240cµω2A2 + 6ω2A2 + 6aA2 + 240dµA2 + 6bA0A2 = 0,

24cA1ω
2 + 336cλA2ω

2 + 18bλA2
2 + 24dA1 + 336dλA2 + 12bA1A2 = 0,

120cA2ω
2 + 10bA2

2 + 120dA2 = 0.

Solving this system of algebraic equations by utilizing theMathematica software package, one can
achieve:

A0 = −1

b

{
a+ cλ2ω2 + 8cµω2 + dλ2 + 8dµ+ ω2

}
,

A1 = −1

b

{
12λ

(
cω2 + d

)}
, A2 = −1

b

{
12
(
cω2 + d

)}
.

Therefore, we can identify the subsequent three categories of travelingwave solutions for (1+1)D-
gnDDE (2) in the cases listed as below:

Case 1: When λ2 − 4µ > 0,we achieve the solution in terms of hyperbolic functions,

w(x, t) = −1

b

{
a+ cλ2ω2 + 8cµω2 + dλ2 + 8dµ+ ω2 +

{
12λ

(
cω2 + d

)}
×
(
∆1

C0 sinh [∆1(x− ωt)] + C1 cosh [∆1(x− ωt)]

C0 cosh [∆1(x− ωt)] + C1 sinh [∆1(x− ωt)]
− λ

2

)
+
{
12
(
cω2 + d

)}
×
(
∆1

C0 sinh [∆1(x− ωt)] + C1 cosh [∆1(x− ωt)]

C0 cosh [∆1(x− ωt)] + C1 sinh [∆1(x− ωt)]
− λ

2

)2
}
, (33)

where ∆1 =
1

2

√
λ2 − 4µ with constant C0 as well as C1 arbitrary. One presents the

wave dynamics of the hyperbolic secant-cosecant solution (33) in the plots exhibited in
Figure 4.

Case 2: When λ2 − 4µ < 0,we achieve the solution in terms of trigonometric functions,

w(x, t) = −1

b

{
a+ cλ2ω2 + 8cµω2 + dλ2 + 8dµ+ ω2 +

{
12λ

(
cω2 + d

)}
×
(
∆2

−C0 sin [∆2(x− ωt)] + C1 cos [∆2(x− ωt)]

C0 cos [∆2(x− ωt)] + C1 sin [∆2(x− ωt)]
− λ

2

)
+
{
12
(
cω2 + d

)}
×
(
∆2

−C0 sin [∆2(x− ωt)] + C1 cos [∆2(x− ωt)]

C0 cos [∆2(x− ωt)] + C1 sin [∆2(x− ωt)]
− λ

2

)2
}
, (34)

where ∆2 =
1

2

√
4µ− λ2, with constants C0 and C1 arbitrary.
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(a) (b) (c)

Figure 4: Bell-shaped wave structure of hyperbolic solution (33) using the data values b = 0.2, c = 0.5, α = 0.1, β = 0.4, d = 0.1,
ω = 0.2, a = −5, λ = −0.4, µ = −0.8, C0 = 30, C1 = 2 in the interval −15 ≤ t, x ≤ 15 is displayed in Figure 4. This actually
portrays a bright soliton wave structure.

Case 3: When λ2 − 4µ = 0,we achieve the solution in terms of rational function,

w(x, t) = −1

b

{
a+ cλ2ω2 + 8cµω2 + dλ2 + 8dµ+ ω2 +

{
12λ

(
cω2 + d

)}
×
(

C1

C0 + C1(x− ωt)
− λ

2

)
+
{
12
(
cω2 + d

)}( C1

C0 + C1(x− ωt)
− λ

2

)2
}
,

(35)

where constants C1 and C2 are arbitrary.

2.3 Significance of the graphical depictions of solutions

Wenotice that Figure 1 illustrates the periodicwavemotion of the elliptic solution (15), Figure 2
(bright-dark combo soliton) reveals the dynamics of the secant hyperbolic solution (21), whereas
the bright soliton wave patterns in Figures 3 and 4 display the wave structures of solutions (29)
and (33), respectively. These wave depictions are interesting and have notable relevance in the
field of science and engineering.

A periodic wave refers to any repeating pattern that maintains a consistent wavelength and
frequency (see Figure 5). A periodic wave can be characterized by features like amplitude, fre-
quency, and time period. Examples include soundwaves (longitudinal), water waves, light waves
(transverse), and alternating current generators. Periodic waves, recognized for their recurring
patterns, play an essential role in numerous domains as they underpin radio/audio transmission,
AC power, and signal processing, facilitating technologies such as oscilloscopes (see Figure 6) and
waveform generators for diagnostic and troubleshooting purposes. The amplitude of a wave, rep-
resented as A in the diagram below , is directly linked to the energy of a wave and indicates the
wave’s highest and lowest points [17].

Bright solitons, together with dark solitons, are localized wave packets that preserve their
shape while traveling. They are important in numerous areas such as optics, fluid dynamics,
and plasma physics, facilitating effective information transmission and additional applications.
Bright solitons represent peaks in intensity, whereas dark solitons signify dips in intensity, with
both serving distinct functions in nonlinear wave phenomena.
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Figure 5: Diagrammatic display of a periodic wave in which the amplitude of the wave, shown as A in the diagram, is directly related to the
energy of the wave [17].

The terms "bright" and "dark" originate from optics, where they refer to the luminous areas
and shadowy spots that arise in optical fibers . Nonetheless, in the 1830s, soliton sightings were
recorded in water. Oceanographers were surprised by the finding in the 1960s and 1970s that
luminous solitons existed on the surface of deep ocean waters. Nevertheless, many experiments
have been conducted to explore and confirm the phenomenon, with some identifying bright soli-
tons as the source of rogue waves in the ocean. Both bright and dark solitons have currently been
detected in Bose-Einstein condensates, plasmas, fiber optics, and various other settings [18].

It is widely recognized that bright soliton shapes are defined by the hyperbolic secant func-
tion. The bright soliton solution typically exhibits a bell-shaped form and travels without distor-
tion, maintaining its shape over indefinitely long distances. Nonetheless, dark soliton solutions,
arranged as topological optical solitons as well, are represented by the hyperbolic tangent. It is
noteworthy that (13) resembles the ordinary differential equation derived in the seminal study
by Korteweg and de Vries [19]. This ODE pertains to long waves traveling through a rectangular
canal. The ODE (13) characterizes stationary waves, and by applying specific conditions, such as
ensuring the fluid remains undisturbed at infinity, Korteweg and de Vries derived both negative
and positive solitary wave solutions, along with cnoidal wave solutions [19, 10].

Figure 6: A typical oscilloscope. It contains numerous dials and buttons, yet their primary function is to show and measure fluc-
tuating signals such as sound waves and alternating current. https://www.savemyexams.com/o-level/physics/cie/23/revision-notes/
4-electricity-and-magnetism/4-6-uses-of-an-oscilloscope/uses-of-an-oscilloscope/.
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3 Conservation Laws of (1+1)D-gnDDE (2)

This segment provides the conserved vectors of the fundamental equation by applying Ibrag-
imov’s theorem on preserved vectors, as referenced in previous works [16]. This is achieved by
utilizing the established symmetries.

3.1 Formal Lagrangian and conserved currents

Consider a system of sth-order α PDEs [16],
Ξσ(x,Θ,Θ(1), . . . , Θ(s)) = 0, σ = 1, . . . , α, (36)

with κ independent together with α dependent variables given as x = (x1, x2, . . . , xκ) and
Θ = (Θ1, Θ2, . . . , Θα). The system of adjoint equations are given by,

Ξ∗
σ(x,Θ,Ω, . . . , Θ(s),Ω(s)) ≡

δ(ΩβΞβ)

δΘσ
= 0, σ = 1, . . . , α, (37)

where Ω = (Ω1, . . . ,Ωα) are new dependent variables, Ω = Ω(x). The operator δ/δΘσ , expressed
for each σ, as,

δ

δΘσ
=

∂

∂Θσ
+

∞∑
s=1

(−1)sDi1 . . . Dis

δ

δΘσ
i1,i2,...,is

, i = 1, . . . , κ, (38)

is the Euler-Lagrange operator and,

Di =
∂

∂xi
+Θσ

i

∂

∂Θσ
+Θσ

ij

∂

∂Θσ
j

+ . . . , i = 1, . . . , κ, j = 1, . . . , κ, (39)

is the total differential operator.

An n-tuple C = (C1, C2, · · · , Cn), such that,
DiC

i = 0, (40)
holds for all solutions of (36) is referred to as the conserved current of the equation.

The formal Lagrangian of the system (36) and its adjoint (37) is given as,
L = ΩσΞσ(x,Θ,Θ(1), . . . , Θ(s)). (41)

Theorem 3.1. Every nonlocal symmetry, Lie-Bäcklund, as well as Lie point symmetry,

R = ξi
∂

∂xi
+ φσ ∂

∂Θσ

, ξi = ξi(x,Θ), φσ = φσ(x,Θ), (42)

admitted by the system (36) produces a conserved vector for (36) and its adjoint (37), with the conserved
vectors T = (T 1, . . . , Tκ) having components T i given by,

T i = ξiL+Πσ

[
∂L
∂Θσ

i

−Dj
∂L
∂Θσ

ij

+DjDk

(
∂L

∂Θσ
ijk

)
+ . . .

]
+Dj(Π

σ)

[
∂L
∂Θσ

ij

−Dk
∂L

∂Θσ
ijk

+ . . .

]
+DjDk(Π

σ)
∂L

∂Θijk
+ . . . , i, j, k = 1, . . . , κ, (43)
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with Lie characteristic function Πσ explicated by,

Πσ = φσ − ξjΘσ
j , σ = 1, . . . , α, j = 1, . . . , κ. (44)

Remark 3.1. It is noted that a set of differential equations (36) is considered self-adjoint when substituting
v = w into the set of adjoint equations specified in (37) results in the same set of equations (37). For a more
thorough understanding of the demonstration and additional valuable information related to the findings
discussed here, it is recommended for the reader to refer to the sources cited [16].

The multiplier Λ of system (36) has the property that,

DiC
i = ΛσΞσ, σ = 1, . . . , α. (45)

The equations governing all multipliers are derived from,
δ

δΘσ
(ΛσΞσ) = 0, σ = 1, . . . , α. (46)

Once the multipliers are produced through (46), the conserved currents can be obtained by using
(45) as the governing formula. Now, we proceed to calculate the symmetries of (2) in order to use
them for computing the conserved vectors via Theorem 3.1 with the formula (43).

3.2 Conserved vectors of (2) via Ibragimov’s theorem

Ibragimov’s theorem states that for every conserved quantity in a differential equation, there
exists a unique connection to a Lie point symmetry. Therefore, we utilize the previously presented
symmetry operators to generate new conserved currents using Ibragimov’s theorem [16].

Thus, we give the following theorem:
Theorem 3.2. If the Euler operator δ/δw as explicated in [16] is given consideration, thus, associated
adjoint equation of (1+1)D-gnDDE (2) [16] can be expressed through the relation,

H∗ ≡ δ

δw

[
v
{
wtt + awxx + b(wwxx + w2

x) + cwttxx + dwxxxx

}]
= 0. (47)

Further expansion of (47) secures,

H∗ ≡ vtt + (a+ bw)vxx + cvttxx + dvxxxx = 0. (48)

The formal Lagrangian of (1+1)D-gnDDE (2) together with its adjoint presented in (48) is expressed in
the format,

L = v
{
wtt + awxx + b(wwxx + w2

x) + cwttxx + dwxxxx

}
. (49)

Therefore, the conserved vectors (T i, Xi), i = 1, 2, . . . , 6, are formulated for the Lagrangian (L) by employ-
ing the appropriate structure of (43) applicable here, purveyed as [16]:

T = ξ1L+Wα

[
∂L
∂wα

i

−Dj
∂L
∂wα

ij

+DjDk

(
∂L

∂wα
ijk

)
+ . . .

]

+Dj(W
α)

[
∂L
∂wα

ij

−Dk
∂L

∂wα
ijk

+ . . .

]
+DjDk(W

α)
∂L

∂wijk
+ . . . , (50)
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X = ξ2L+Wα

[
∂L
∂wα

i

−Dj
∂L
∂wα

ij

+DjDk

(
∂L

∂wα
ijk

)
+ . . .

]

+Dj(W
α)

[
∂L
∂wα

ij

−Dk
∂L

∂wα
ijk

+ . . .

]
+DjDk(W

α)
∂L

∂wijk
+ . . . , (51)

with constant α = 1, 2 as well as j = 1, 2, 3, 4. Wα = Ψα − ξjwα
j is the involved Lie characteristic

function.

One calculates the associated conservation laws of (1+1)D-gnDDE(2) related to vectorsQ1,Q2

andQ1+ωQ2 using both Theorem 3.2 and the data found in the references cited, as demonstrated
by [16]. Therefore, one has:

T t
1 = awxxv + bw2

xv + bwxxwv +
1

2
cvwttxx + dwxxxxv −

1

3
cwtxvtx +

1

6
cvtwtxx

+
1

2
cwtvtxx − 1

6
cwttvxx +

1

3
cvxwttx + wtvt,

T x
1 = bwtvxw − avwtx − bwtwxv − bwvwtx − 1

2
cvwtttx − dvwtxxx + awtvx

+
1

2
cwtvttx − 1

3
cwttvtx − 1

6
cvttwtx +

1

3
cvtwttx +

1

6
cwtttvx + dwtvxxx

− dvxxwtx + dvxwtxx,

T t
2 =

1

6
cvtwxxx − 1

2
cvwtxxx − vwtx − 1

6
cvxxwtx − 1

3
cwxxvtx

+
1

3
cvxwtxx +

1

2
cwxvtxx + vtwx,

T x
2 = bwxvxw +

1

2
cvwttxx + wttv + awxvx +

1

6
cvxwttx − 1

3
cwtxvtx +

1

3
cvtwtxx

− 1

6
cvttwxx +

1

2
cwxvttx + dwxxxvx − dwxxvxx + dwxvxxx,

T t
3 = awxxv + bw2

xv + bwxxwv −
1

2
cωvwtxxx +

1

2
cvwttxx + dwxxxxv

− ωvwtx +
1

2
cωwxvtxx +

1

6
cωvtwxxx − 1

6
cωvxxwtx − 1

3
cωwxxvtx +

1

3
cωvxwtxx

− 1

3
cwtxvtx +

1

6
cvtwtxx +

1

2
cwtvtxx − 1

6
cwttvxx +

1

3
cvxwttx + ωvtwx + wtvt,

T x
3 = bwtvxw − avwtx + bωwxvxw − bwtwxv − bwvwtx +

1

2
cωvwttxx

− 1

2
cvwtttx − dvwtxxx + ωwttv + awtvx + aωwxvx +

1

6
cωvxwttx

− 1

3
cωwtxvtx +

1

3
cωvtwtxx − 1

6
cωvttwxx +

1

2
cωwxvttx +

1

6
cwtttvx

− 1

3
cwttvtx − 1

6
cvttwtx +

1

3
cvtwttx +

1

2
cwtvttx + dvxwtxx + dwtvxxx

− dvxxwtx + dωwxxxvx − dωwxxvxx + dωwxvxxx.

3.3 Conserved vectors of (2) via the multiplier approach

In this subsection, we utilize the multiplier technique [29] to form conservation laws for the
model (1+1)D-gnDDE (2). First of all, we calculate the zeroth-order multiplier
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M(x, t, w) = M for (2). Thus, following the procedure introduced by [29] and invoking (38), one
secures determining equations through the expansion of,

δ

δw

{
M(t, x, w)

[
wtt + awxx + b(wwxx + w2

x) + cwttxx + dwxxxx

]}
= 0, (52)

which solves to give the zeroth-order multiplierM(t, x, w) for (2) as,

M(t, x, w) = (C1x+ C2) t+ C3x+ C4, (53)

in which Cm,m = 1, 2, 3, 4 are arbitrary constants. The associated four multipliers are expressed
as,

M1 = xt, M2 = t, M3 = x and M4 = 1. (54)

Consequently, relative to the multipliers above, one could through (45) which in this regard ex-
pands to,

DxC
x +DtC

x = M(t, x, w)
[
wtt + awxx + b(wwxx + w2

x) + cwttxx + dwxxxx

]
,

calculate the following four conserved vectors of (2) as:

Ct
1 =

1

3
cwx − wx − 1

6
cxwxx + txwt −

1

3
ctwtx +

1

2
ctxwtxx,

Cx
1 =

1

3
cwt + btxwwx + atxwx + dtxwxxx +

1

2
ctxwttx − atw − dtwxx − 1

3
cxwtx

− 1

6
ctwtt −

1

2
btw2,

Ct
2 =

1

2
ctwtxx + twt −

1

6
cwxx − w,

Cx
2 =

1

2
ctwttx + btwwx + atwx + dtwxxx − 1

3
cwtx,

Ct
3 =

1

2
cxwtxx − 1

3
cwtx + xwt,

Cx
3 =

1

2
cxwttx + bxwwx + axwx + dxwxxx − 1

2
bw2 − aw − dwxx − 1

6
cwtt,

Ct
4 = wt +

1

2
cwtxx,

Cx
4 =

1

2
cwttx + bwwx + awx + dwxxx.

Remark 3.2. One notices here, that the multiplierM4(t, x, w) = 1, produces the model (1+1)D-gnDDE
(2) in a conserved structure.

4 Conclusions

The double dispersion equation is important due to its numerous physical applications, such as
examining the nonlinear wave distribution in waveguides, investigating the interaction of waveg-
uides with the surrounding medium, and assessing the probability of energy transfer through
lateral waveguide coverings. In view of this, this article explores analytical examinations of a
(1+1)-dimensional generalized double dispersion equation in inhomogeneous and uniformMur-
naghan’s rod. This is applicable for modeling wave propagation in elastic solid materials, which
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hold significance in solid-state mechanics. Therefore, the analytical investigations carried out on
the generalized double dispersion equation in heterogeneous and uniform Murnaghan’s rod ex-
pressed in (2) are explicated in this article. Initially, the Lie symmetry analysis approach was
used to calculate the Lie point symmetries of the model, resulting in a two-dimensional Lie al-
gebra. Moreover, the obtained nonlinear ordinary differential equation is directly integrated in
order to obtain closed-form solutions for the model, achieving an elliptic cosine function solution
in this case. By employing a specific conversion, the method also guarantees the achievement of a
Weierstrass function solution.

Furthermore, to find more answers to the given problem, the popular Kudryashov’s tech-
nique was employed, allowing us to obtain a solution in exponential form. Following that, we
utilized the (G′/G)-expansion method, which in turn generates solutions in the form of hyper-
bolic, trigonometric, and rational functions. Furthermore, showcasing the wave dynamics of the
obtained solutions helps us better understand the physical interpretations of these solutions, with
various representations including 3-dimensional, 2-dimensional, contour, and density plots. In
conclusion, the research also identifies important conserved quantities like energy, mass, and mo-
mentum, which are upheld by utilizing Ibragimov’s theorem and the multiplier method. The
two techniques applied ensure that various conservation laws of note are derived, including the
conservation of momentum and energy.

Therefore, the findings may prove beneficial to various researchers within the realms of sci-
ence and engineering. We add that despite the fact that the main method utilized here can only
be applied to differential equations with symmetries, it is one of the best approaches to solving
differential equations. Additionally, the work does not cover the use of conservation laws of the
studied model to obtain solutions; therefore, future work could involve the application of the as-
sociated conserved vectors to perform multiple reductions to secure more analytical solutions to
the model.
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